

Invisible Load: Uncovering the Challenges of Neurodivergent Women in Software Engineering

Munazza Zaib*

Monash University

Melbourne, Australia

munazza.zaib@monash.edu

Dulaji Hidellaarachchi

RMIT University

Melbourne, Australia

dulaji.hidellaarachchi@rmit.edu.au

Wei Wang

Monash University

Melbourne, Australia

wei.wang7@monash.edu

Isma Farah Siddiqui

Monash University

Melbourne, Australia

ismafarah.siddiqui@monash.edu

Abstract

Neurodivergent women in Software Engineering encounter distinctive challenges at the intersection of gender bias and neurological differences. To the best of our knowledge, no prior work in SE research has systematically examined this group, despite increasing recognition of neurodiversity in the workplace. Underdiagnosis, masking, and male-centric workplace cultures continue to exacerbate barriers that contribute to stress, burnout, and attrition. In response, we propose a hybrid methodological approach that integrates InclusiveMag's inclusivity framework with the GenderMag walkthrough process, tailored to the context of neurodivergent women in SE. The overarching design unfolds across three stages, scoping through literature review, deriving personas and analytic processes, and applying the method in collaborative workshops. We present a targeted literature review that synthesizes challenges into cognitive, social, organizational, structural and career progression challenges neurodivergent women face in SE, including how under/late diagnosis and masking intensify exclusion. These findings lay the groundwork for subsequent stages that will develop and apply inclusive analytic methods to support actionable change.

CCS Concepts

- Human-centered computing → Accessibility theory, concepts and paradigms.

Keywords

Neurodiversity, Software Engineering, Women in SE

ACM Reference Format:

Munazza Zaib, Wei Wang, Dulaji Hidellaarachchi, and Isma Farah Siddiqui. 2026. Invisible Load: Uncovering the Challenges of Neurodivergent Women in Software Engineering. In *2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE-SEIS '26), April 12–18, 2026, Rio de Janeiro, Brazil*. ACM, New York, NY, USA, 5 pages. <https://doi.org/10.1145/3786581.3786927>

*Also with Western Sydney University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE-SEIS '26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2424-4/2026/04
<https://doi.org/10.1145/3786581.3786927>

1 Introduction

The landscape of the technology sector is evolving rapidly as it is becoming more inclusive and diverse [3, 43]. As workplace inclusion efforts expand, neurodiversity is encompassing natural variations in cognition and perception and is gaining recognition for the unique strengths neurodivergent individuals bring to problem-solving and innovation in technical fields [3, 19, 20, 24]. The concept of neurodiversity has expanded beyond individuals with formal diagnoses (e.g., autism, ADHD, learning disorders) to include a broader population of those who self-identify as neurodivergent [14]. In Australia, an estimated 30–40% of the population identifies as neurodivergent [1], and this trend is reflected in software engineering (SE) domain, with the Stack Overflow Developer Survey (2018–2022) reporting 4.27% of respondents identifying with autism/ASD and 10.27% with concentration or memory disorders (e.g., ADHD) among over 71,000 participants [45].

Employers and researchers, particularly within SE, are beginning to recognize neurodivergent individuals as valuable contributors, offering distinct strengths that can enhance team performance and innovation [3, 15]. Major tech companies SAP, Hewlett Packard Enterprise, and Microsoft have initiated neurodivergent hiring programs to leverage these strengths [3]. However, the benefits of these initiatives are not equally experienced by all. Women with neurodiverse conditions often face compounded challenges, navigating both gender bias and the stigma associated with neurological difference [9, 29]. Conditions such as autism and ADHD have historically been underdiagnosed in women, leading to a lack of recognition, delayed diagnosis, and minimal support during key developmental and career stages [4, 36]. These burdens are further intensified by masking pressures. Many neurodiverse women report “camouflaging” their traits to meet expectations of both femininity and professional competence [9, 26, 29]. In male-dominated SE workplaces, where extroverted and fast-paced communication styles are often valorized, such continuous self-monitoring can be exhausting [21]. Over time, this constant self-monitoring contributes to mental health decline, burnout, and diminished workplace participation [27, 32, 42].

While recent SE research has begun exploring inclusivity from a neurodiversity perspective [33, 43], the *intersection of gender and neurodiversity remains significantly underexplored*. Most studies have focused either on gender diversity or general developer well-being, but not on the unique lived experiences of **neurodivergent**

women in SE [16, 43]. This paper is part of an effort to reimagine inclusion in software engineering, not through isolated accommodations, but through reengineering the very processes that shape how teams work, evaluate and design. Our project asks: **How can software engineering practices be systematically redesigned to support the sustained participation, visibility, and well-being of neurodivergent women?** To begin addressing this question, we focus on the Scope phase of our methodology, using a comprehensive literature review to surface the lived challenges neurodivergent women encounter across SE work.

This position paper argues that the barriers faced by ND women in SE expose deeper structural misalignments, where workplace norms, performance expectations, and design practices are still shaped around narrow definitions of communication, productivity, and competence. These challenges will not be solved by retrofitting accessibility onto existing systems. We advocate for a **fundamental shift toward systematic, intersectional inclusion**, where design-for-diversity is embedded into the core of how teams hire, evaluate, and collaborate. To support this, we adopt and adapt the InclusiveMag meta-method [35] and the GenderMag [5] walkthrough framework as the foundation for a structured, phased approach. Establishing this foundation of documented challenges is essential for enabling future phases of research that will design and test inclusive analytic methods to support sustainable change in SE.

2 Related Work

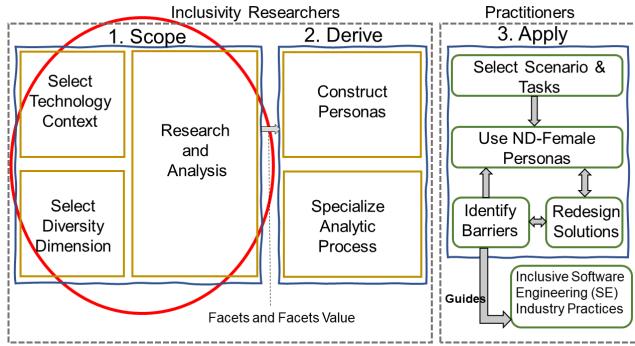
Kapp et al. [28] formalized neurodiversity as a *deficit-difference* synthesis, recognizing that neuro-cognitive differences can involve disabling barriers while also representing legitimate forms of diversity. This further became popular in education and workplace contexts [2], while Den Houting [12] provided critical clarification of its meaning and misconceptions. In our paper, neurodiversity is considered as population-level differences such as autism and ADHD, where inclusion is achieved by adjusting environments and practices [12, 28].

2.1 Neurodiversity in Women

Historically, the neurodiversity spectrum, including ADHD and autism was framed through a male lens as it was thought to affect only boys [7]. Because women were largely absent from research, diagnostic criteria were developed based on male presentations of these conditions, which led to the under and late-diagnosis of women [13, 40]. As visibility has grown, more women are diagnosed in adolescence or adulthood, however, recognition often occurs late and after prolonged self-compensation [4, 6]. A central mechanism in this delay is *camouflaging*, the masking and compensation of autistic traits to meet social expectations [26]. Lai et al. [29] found that women score higher than men on camouflaging, measured as a discrepancy between internal traits and observable social behaviour, and that camouflaging is associated with depressive symptoms and sex-differentiated neural patterns. A systematic review across 29 studies further indicates that camouflaging is prevalent, and robustly associated with anxiety and depression even though measures vary (self-report vs discrepancy indices) and longitudinal designs remain scarce [9]. Complementing these findings, a quality study with late-diagnosed women explains that years of *pretending*

to be normal, gendered clinical blind spots and greater vulnerability during undiagnosed periods demonstrated concrete life-course costs of delayed recognition [4].

While increased awareness is shifting diagnostic trends [6], women remain disproportionately affected by delayed diagnoses across the neurodiversity spectrum and the downstream impacts are still under-examined [23]. The mental health burden intensifies around major life transitions, from childhood to adulthood, relationships, and motherhood, where it is highlighted that autistic mothers report sensory overload and healthcare communication barriers and identify predictability and peer networks as protective [41]. This evidence suggests that process and environment fit, rather than motivation or capacity (their cognitive ability, intelligence, or competence), shape outcomes for ND women across the lifespan.


2.2 Neurodiversity in SE Research

Research on neurodiversity in SE has grown, highlighting both the strengths and barriers experienced by ND developers. An early large-scale Microsoft study found ND employees faced challenges with open-plan noise, frequent interruptions, and fast-paced communication, while also excelling in attention to detail, persistence, and pattern recognition [38]. Later studies extended this perspective into Agile teams, when Gama and Lacerda [15] found that stand-ups, rigid sprint ceremonies and unspoken collaboration norms often created exclusion while practices such as predictable cadence, artifact-first communication and opt-in pairing could make processes more accessible.

Apart from these, task-specific studies have provided further granularity. Sasportes [44] found that autistic developers often excel in bug detection and detail checking but face barriers from implicit social norms, unstructured review protocols, and unclear tool design. Newman et al. [39] focused on ADHD in professional programming and demonstrated that code review is particularly high-load with difficulties linked to abstraction, working memory and time management. They also documented compensatory strategies (e.g., chunking tasks, externalizing information, timers) that remain under-supported in organizational contexts. Analysis of the 2022 Stack Overflow developer survey by Verma et al. [46] indicated that ND developers compared to neurotypical peers reported more challenges with collaboration, coordination and interruptions suggesting systemic misfit in team-based practices. Menezes et al. [11] highlighted how ND practitioners often felt pressured to "give 100% all the time", linking this to burnout, fatigue and attrition risks. Costello et al. [10] in a review of autistic professionals' career pathways pointed to barriers in hiring, performance evaluation and workplace communication. Evidence from computing education further supports a fit-over-deficit interpretation [18]. Taken together, SE research shows that ND developers face barriers concentrated in communication load, interruptions, unstructured collaboration rituals and cognitively demanding tasks in SE [31]. These challenges map directly to the kinds of social and organizational pressures where ND women due to camouflaging, late diagnosis and gendered expectations are likely to experience intensified exclusion and burnout. Yet, current research are almost entirely *gender-blind* as they rarely disaggregates by gender or examine how neurodiversity interacts with the gendered dynamics of male-dominated SE

workplaces. This gap limits our ability to design interventions that address the compounded challenges faced by ND women in SE.

3 Our Approach

Figure 1: Hybrid InclusiveMag–GenderMag Method: Supporting Neurodivergent Female Software Engineers, adapted from InclusiveMag [35]

We are currently in the *Scope phase* of a three-stage methodology; **Scope, Derive, and Apply**, through which we apply and adapt the InclusiveMag meta-method to investigate the lived experiences of ND Women in SE (see Figure 1). This phase focuses on defining the context and target population via a literature review and an exploratory survey for the development of validated facets, personas, and task scenarios in the following stages. This work applies the InclusiveMag method, a meta-framework that enables inclusivity researchers to generate new inclusive design methods [35]. InclusiveMag has been previously used in various domains, including age inclusivity [34] and student inclusivity [30, 37]. It was inductively derived by generalising the structure and principles of GenderMag [5], a method developed to uncover gender biases in software. We integrate InclusiveMag's structured inclusivity framework with the GenderMag walkthrough process, tailoring it to better reflect the strengths, challenges, and needs of ND Women in SE.

Step One: Scope – Defining the Context and Target Population. We conducted a comprehensive literature review across SE, HCI, and ND studies to identify recurring barriers, strengths, and adaptation strategies for ND women in SE. This helped to establish the five challenge categories used in the remainder of the paper. Based on the insights from our targeted literature review, the next step is to conduct an exploratory survey study focusing on ND Women practitioners, to validate our findings. The survey responses will be used to refine the challenges according to inclusion criteria [25], ensuring that the framework is grounded in both empirical evidence.

Step Two: Derive – Personas and the Adapted Analytic Process. In phase 2, we will employ large language models (LLMs) as a scaffolding tool to generate personas that instantiate these challenges in situated scenarios. To mitigate risks of bias, stereotyping or reductive portrayals, we use them only as prompts rather than fixed labels, and each persona is grounded in evidence from our stage 1 review and survey results. The LLM outputs will be

subjected to stereotype filtering, evidence anchoring and expert auditing to minimize bias and ensure fidelity. Based on the drafts, we will then refine and extend them by integrating the structured facets identified through the survey. This process yields a diverse set of personas that capture varied profiles of ND women in SE while explicitly including cautions against essentialism. These personas will then be embedded into a specialized cognitive walkthrough (CW) protocol adapted from GenderMag [5, 47]. The CW forms will be adapted to explicitly incorporate the personas, with evaluation sheets and walkthrough questions restructured so that each decision point prompts evaluators to ask whether a persona (e.g., high masking, low tolerance for sensory load, strong need for structure) would be able to identify the correct action, interpret social cues, or manage the cognitive demands of the task.

Step Three: Apply – Practitioner-Led Application of the Method with ND Women Validation. In this phase, the method will be exercised with industry practitioners, including developers, team leaders, agile coaches, UX experts, and tool designers. We will run remote workshops with industry teams to apply the adapted walkthrough to realistic tasks (e.g., sprint planning, code review, onboarding). To ensure lived-experience fidelity, we will also run remote validation sessions with ND women practitioners. Validation may be synchronous or asynchronous (chat-only or written feedback), with accommodations for privacy and sensory needs. ND women feedback will confirm, refine, or reject issues raised by practitioner teams and may propose alternative adjustments. Outputs across both activities include a structured list of inclusiveness issues and concrete changes to ceremonies, review templates, and collaboration norms.

4 Where We Stand; Challenges Faced by Neurodivergent (Autistic & ADHD) Women

We are currently undertaking the Scope phase of our broader research agenda, which serves as the foundation for our project. This stage involves a comprehensive literature review focused on the lived experiences of ND women in SE. Guided by two central questions:

- (1) **RQ1:** What are the main challenges faced by female ND software engineers in the industry?
- (2) **RQ2:** How can these challenges be categorized across cognitive, social, organizational, and structural domains?

To address these RQs, we first identified the central challenges experienced by ND women in the SE industry (**RQ1**). While many of these challenges are shared by neurodivergent practitioners more broadly, they are often intensified by gendered dynamics within a male-dominated industry (See Table 1). To operationalize **RQ2**, we draw on prior work [15, 31, 38, 44] in neurodiversity studies and organizational research to define the domains as follows: *Cognitive / Executive* refers to difficulties with planning, memory, and task management; *Social / Interpersonal* encompasses struggles with informal communication norms and team dynamics; *Organizational / Environmental* captures barriers in workplace setups such as open offices, multitasking, and lack of mentorship; *Structural / Cultural* highlights systemic issues such as biased evaluations and insufficient accommodations; and *Career Pathway / Progression* points to barriers in hiring, promotion, and access to leadership. These

Table 1: Intersectional Challenges of Neurodivergent Women in Software Engineering.

Categories/ Domains	Core ND Challenges in SWE	Gendered Amplifiers (ND Women)	Impact	Examples
Cognitive / Executive	Executive dysfunction: difficulty with planning, prioritisation, task estimation, working memory, inhibition [31, 38, 39, 46]	Later or missed diagnosis due to male-centric criteria; self-doubt, impostor feelings, lack of early accommodations [4, 23, 26, 29]	Underdeveloped coping strategies; struggle to meet deadlines; chronic cognitive overload [10, 11]	A ND women only diagnosed with ADHD in their 30s struggle to estimate sprint tasks accurately, leading managers to view them as “unreliable.”
Social / Interpersonal	Struggles with informal communication norms, eye contact, small talk; collaboration anxiety in agile teams [15, 31, 38]	Chronic masking/camouflaging to appear neurotypical; fear of stigma and disclosure, especially in male-dominated settings [10, 17, 36, 38]	Social isolation, exclusion from peer learning networks, reduced visibility of contributions [10]	In pair programming, forcing eye contact and small talk drains energy, leaving less focus for coding tasks.
Organizational / Environmental	Distractions from open offices, excessive tools, multitasking; frequent interruptions disrupt focus [15, 38, 44, 46]	Lack of mentors and sponsors; stereotype threat leading to overcompensation and burnout [11, 17, 20, 22]	Reduced productivity; difficulty sustaining performance; heightened stress and fatigue [10, 11, 31]	Hot-desking and constant Slack pings overwhelm attention; ND women leave stand-ups exhausted before deep work begins.
Structural / Cultural	Lack of awareness or accommodations from managers; biased evaluation of performance [10, 20, 38]	Intersectional barriers (gender × neurotype × race); underrepresentation in leadership roles [11, 17]	Systemic exclusion; stagnated career progression; higher attrition risk [11]	A SE developer missing daily stand-ups due to sensory overload is labelled “uncommitted.”
Career Pathway / Progression	Inaccessible hiring practices (e.g., timed coding tests, rigid interviews, reliance on eye contact or small talk); biased promotion and performance review systems [10, 38, 44]	Gendered expectations around confidence and assertiveness; lack of sponsorship opportunities; career breaks penalized more heavily for women [8, 20, 22]	Reduced access to leadership roles; stalled advancement; increased likelihood of leaving the profession [11]	An autistic SE professional woman performs strongly in technical problem-solving but is rejected after struggling with small talk in a panel interview.

domains provide a structured lens for analyzing how challenges manifest and intersect across multiple levels of the SE workplace (See Table 1). This structure emphasizes the main neurodivergent challenges and gendered amplifiers that contribute to exclusion, lower visibility, and potential attrition. Our analysis reveals a disconnect between typical SE processes and the experiences of ND women, indicating that mere ‘add-on’ accommodations fall short without changes to daily practices and evaluation systems.

5 Reframing Software Engineering Through a Neurodiversity Lens

The challenges outlined above do not occur in a vacuum, they intersect deeply with the fabric of modern software engineering practices, particularly in Agile-driven, collaborative environments [15]. While designed for speed and efficiency, these practices embed implicit norms around communication and cognition that can disadvantage ND women. We propose that these frictions could prompt a rethinking of how SE is practiced, evaluated, and taught.

Agile ceremonies and cadence: Daily stand-ups and sprint rituals may increase cognitive load around planning, recall, and rapid turn-taking. When diagnosis comes later, women may enter teams without formal adjustments, so difficulties adapting to constant verbal updates can be read as “commitment” issues rather than signals to adjust process [4, 13, 15, 38]. Apart from these, camouflaging to keep up could add fatigue [26, 29].

Code review and quality practices: Modern code review can function as a participation and visibility gate. While many ND engineers excel at detail-oriented defect finding, unstructured expectations and implicit norms may penalise women’s contributions or tone and review work can also be high-load for ADHD (abstraction, working memory, time management) [39, 44].

Collaboration and culture: Practices such as pair programming and continuous collaboration can be double-edged. They may support learning, but can also become exhausting when social interaction is constant. For ND women, the pressure to appear fully

engaged and socially competent often leads to masking behaviour. This not only consumes additional energy but may also limit opportunities to build authentic relationships and access informal support networks [11, 15, 17, 36]. Over time, this cycle could reduce both well-being and visibility within the team.

These impacts suggest that exclusion does not come from lack of technical ability but from how current Agile practices can intensify late diagnosis, masking, and gaps in support for women. Adjustments in ceremonies, reviews, and collaboration could make participation more sustainable.

6 Conclusion and Future Plans

The challenges faced by ND women in SE are not edge cases rather they are signals of deeper structural issues in how the field defines communication, collaboration, and competence. Addressing these issues demand more than accommodations bolted onto existing workflows. Our approach draws on InclusiveMag and GenderMag, and is not just a toolkit but a methodological stance: one that prioritizes intersectionality, lived experience, and adaptability in analytic practice. In future work, our goal is to develop *NeurodiversiWMag* (ND Women Inclusiveness Magnifier), a methodological variant designed to centre the experiences of ND women in SE. Our goal is to translate this framework into a reusable resource for software teams, researchers, and educators. This will include validated persona libraries, adapted walkthrough prompts, and lightweight digital tools that help teams identify inclusion gaps without requiring formal facilitation. If SE is to serve all who build and use software, it must evolve beyond narrow norms of speed, social ease, and standardization.

Acknowledgments

We acknowledge the use of ChatGPT-5 to improve clarity and readability. This work has been supported by Monash University FIT fund on EDI Research and Improving Practice under C01001/2900289 EDI Research & Best Practice Development.

References

- [1] 2024. https://dxc.com/au/en/newsroom/07152024?utm_source=chatgpt.com
- [2] Thomas Armstrong. 2010. *Neurodiversity: Discovering the extraordinary gifts of autism, ADHD, dyslexia, and other brain differences*. ReadHowYouWant. com.
- [3] Robert D Austin and Gary P Pisano. 2017. Neurodiversity as a competitive advantage. *Harvard Business Review* 95, 3 (2017), 96–103.
- [4] Sarah Bargiela, Robyn Steward, and William Mandy. 2016. The experiences of late-diagnosed women with autism spectrum conditions: An investigation of the female autism phenotype. *Journal of autism and developmental disorders* 46, 10 (2016), 3281–3294.
- [5] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephan Makri, Laura Beckwith, Irwin Kwan, Anicia Peters, and William Jernigan. 2016. GenderMag: A method for evaluating software's gender inclusiveness. *Interacting with computers* 28, 6 (2016), 760–787.
- [6] Verity Chester. 2019. Autistic women and girls: Increasingly recognised, researched and served. *Advances in Autism* 5, 3 (2019), 141–142.
- [7] Sarah Cilia Vincenti, Michael Galea, and Vince Briffa. 2023. Issues which marginalize females with ADHD-A mixed methods systematic review. (2023).
- [8] Sabrina Cohen-Hatton. 2023. *The Gender Bias: The Barriers that Hold Women Back, and how to Break Them*. Kings Road Publishing.
- [9] Julia Cook, Laura Hull, Laura Crane, and William Mandy. 2021. Camouflaging in autism: A systematic review. *Clinical psychology review* 89 (2021), 102080.
- [10] Emma Costello, Sara Kilbride, Zoe Milne, Paul Clarke, Murat Yilmaz, and Silvana Togneri MacMahon. 2021. A professional career with autism: Findings from a literature review in the software engineering domain. In *European Conference on Software Process Improvement*. Springer, 349–360.
- [11] Nicoly da Silva Menezes, Thayssa Águila da Rocha, Lucas Samuel Santiago Camelo, and Marcelle Pereira Mota. 2025. “I Felt Pressured to Give 100% All the Time”: How Are Neurodivergent Professionals Being Included in Software Development Teams?. In *Simpósio Brasileiro de Sistemas de Informação (SBSI)*. SBC, 525–534.
- [12] Jacqueline Den Houting. 2019. Neurodiversity: An insider's perspective. 271–273 pages.
- [13] Bethany Driver and Verity Chester. 2021. The presentation, recognition and diagnosis of autism in women and girls. *Advances in Autism* 7, 3 (2021), 194–207.
- [14] Patrick Dwyer. 2022. The neurodiversity approach (es): What are they and what do they mean for researchers? *Human development* 66, 2 (2022), 73–92.
- [15] Kiev Gama and Aline Lacerda. 2023. Understanding and supporting neurodiverse software developers in agile teams. In *Proceedings of the XXXVII Brazilian Symposium on Software Engineering*. 497–502.
- [16] Kiev Gama and Aline Lacerda. 2023. Understanding and supporting neurodiverse software developers in agile teams. In *Proceedings of the XXXVII Brazilian Symposium on Software Engineering*. 497–502.
- [17] Jess Goodman. 2025. Neurodivergence and Marginalised Gender-a thematic analysis of womens' and gender-diverse peoples' experiences of ASD and ADHD. (2025).
- [18] Irene L Graaftsm, Eva Marinus, Serje Robidoux, Lyndsey Nickels, and Nathan Caruana. 2022. No evidence that autistic traits predict programming learning outcomes. *Computers in Human Behavior Reports* 7 (2022), 100215.
- [19] Temple Grandin. 2022. *Visual Thinking: The Hidden Gifts of People Who Think in Pictures, Patterns, and Abstractions*. Riverhead Books.
- [20] Sophie Hennekam, Susan M Hayward, and Bettina Lynda Bastian. 2024. Neurodiversity, gender, and work. *Gender, Work & Organization* (2024).
- [21] Sophie Hennekam, Susan M Hayward, and Bettina Lynda Bastian. 2024. Neurodiversity, gender, and work. *Gender, Work & Organization* (2024).
- [22] Sylvia Ann Hewlett, Kerrie Peraino, Laura Sherbin, Karen Sumberg, et al. 2010. *The sponsor effect: Breaking through the last glass ceiling*. Harvard Business Review Boston, MA.
- [23] Eve Holden and Helena Kobayashi-Wood. 2025. Adverse experiences of women with undiagnosed ADHD and the invaluable role of diagnosis. *Scientific Reports* 15, 1 (2025), 20945.
- [24] Martine Hoogman, Marije Stolte, Matthijs Baas, and Evelyn Kroesbergen. 2020. Creativity and ADHD: A review of behavioral studies, the effect of psychostimulants and neural underpinnings. *Neuroscience & Biobehavioral Reviews* 119 (2020), 66–85.
- [25] Catherine Hu, Christopher Perdriau, Christopher Mendez, Caroline Gao, Abrar Fallatah, and Margaret Burnett. 2021. Toward a socioeconomic-aware HCI: Five facets. *arXiv preprint arXiv:2108.13477* (2021).
- [26] Laura Hull, KV Petrides, and William Mandy. 2020. The female autism phenotype and camouflaging: A narrative review. *Review journal of autism and developmental disorders* 7, 4 (2020), 306–317.
- [27] Pardis Jahandideh, Homa Seyedmirzaei, Pegah Rasoulian, and Amirhossein Memari. 2025. Low Battery Alarm: A Scoping Review of Autistic Burnout. *Journal of Autism and Developmental Disorders* (2025), 1–21.
- [28] Steven K Kapp, Kristen Gillespie-Lynch, Lauren E Sherman, and Ted Hutman. 2013. Deficit, difference, or both? Autism and neurodiversity. *Developmental psychology* 49, 1 (2013), 59.
- [29] Meng-Chuan Lai, Michael V Lombardo, Amber NV Ruigrok, Bhismadev Chakrabarti, Bonnie Auyeung, Peter Szatmari, Francesca Happé, Simon Baron-Cohen, and MRC AIMS Consortium. 2017. Quantifying and exploring camouflaging in men and women with autism. *Autism* 21, 6 (2017), 690–702.
- [30] Lara Letaw, Rosalinda Garcia, Heather Garcia, Christopher Perdriau, and Margaret Burnett. 2021. Changing the online climate via the online students: Effects of three curricular interventions on online CS students' inclusivity. In *Proceedings of the 17th ACM Conference on International Computing Education Research*. 42–59.
- [31] Grischa Liebel, Noah Langlois, and Kiev Gama. 2024. Challenges, Strengths, and Strategies of Software Engineers with ADHD: A Case Study. In *Proceedings of the 46th International Conference on Software Engineering: Software Engineering in Society (ICSE-SEIS'24)*. Association for Computing Machinery, 57–68. doi:10.1145/3639475.3640107
- [32] Jane Mantzalas, Amanda L Richdale, Achini Adikari, Jennifer Lowe, and Cheryl Dissanayake. 2022. What is autistic burnout? A thematic analysis of posts on two online platforms. *Autism in Adulthood* 4, 1 (2022), 52–65.
- [33] Gastón Márquez, Michelle Pacheco, Hernán Astudillo, Carla Taramasco, and Esteban Calvo. 2024. Inclusion of individuals with autism spectrum disorder in software engineering. *Information and Software Technology* 170 (2024), 107434.
- [34] Jennifer McIntosh, Xiaojiao Du, Zexian Wu, Giahuu Truong, Quang Ly, Richard How, Sriram Viswanathan, and Tanjila Kanji. 2021. Evaluating age bias in e-commerce. In *2021 IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE)*. IEEE, 31–40.
- [35] Christopher Mendez, Lara Letaw, Margaret Burnett, Simone Stumpf, Anita Sarma, and Claudia Hilderbrand. 2019. From GenderMag to InclusiveMag: An inclusive design meta-method. In *2019 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)*. IEEE, 97–106.
- [36] Victoria Milner, Hollie McIntosh, Emma Colvert, and Francesca Happé. 2019. A qualitative exploration of the female experience of autism spectrum disorder (ASD). *Journal of autism and developmental disorders* 49, 6 (2019), 2389–2402.
- [37] Patricia Morreale, Margaret Burnett, Kyle J Harms, and Daehan Kwak. 2025. How We Did It: Integrating Inclusive Design across the Undergraduate Computer Science Curriculum. In *Proceedings of the 56th ACM Technical Symposium on Computer Science Education V*. 2. 1703–1704.
- [38] Meredith Ringel Morris, Andrew Begel, and Ben Wiedermann. 2015. Understanding the challenges faced by neurodiverse software engineering employees: Towards a more inclusive and productive technical workforce. In *Proceedings of the 17th International ACM SIGACCESS Conference on computers & accessibility*. 173–184.
- [39] Kaia Newman, Sarah Snay, Madeline Endres, Manasvi Parikh, and Andrew Begel. 2025. “Get Me In The Groove”: A Mixed Methods Study on Supporting ADHD Professional Programmers. In *2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE)*. IEEE Computer Society, 778–778.
- [40] Zheyue Peng and Ashley L Watts. 2023. Sex differences in the manifestation of ADHD: A longitudinal examination. (2023).
- [41] AL Pohl, SK Crockford, M Blakemore, C Allison, and S Baron-Cohen. 2020. A comparative study of autistic and non-autistic women's experience of motherhood. *Molecular Autism*, 11 (3).
- [42] Dora M Raymaker, Alan R Teo, Nicole A Steckler, Brandy Lentz, Mirah Scharer, Austin Delos Santos, Steven Kapp, Morrigan Hunter, Andee Joyce, and Christina Nicolaidis. 2020. “Having all of your internal resources exhausted beyond measure and being left with no clean-up crew”: Defining autistic burnout. *Autism in adulthood* 2, 2 (2020), 132–143.
- [43] Gema Rodríguez-Pérez, Reza Nadri, and Meiyappan Nagappan. 2021. Perceived diversity in software engineering: a systematic literature review. *Empirical Software Engineering* 26, 5 (2021), 102.
- [44] Madalena Ribas Saspores. 2024. Challenges and Opportunities for Neurodiverse Software Engineers Modern Code Reviews and Bug Finding. *PQDT-Global* (2024).
- [45] Stack Overflow. 2022. 2022 Stack Overflow Developer Survey. <https://survey.stackoverflow.co/2022/>. Accessed: 24 Sep. 2025.
- [46] Pragya Verma, Marcos Vinicius Cruz, and Grischa Liebel. 2025. Differences between Neurodivergent and Neurotypical Software Engineers: Analyzing the 2022 Stack Overflow Survey. *arXiv preprint arXiv:2506.03840* (2025).
- [47] Cathleen Wharton, John Rieman, Clayton Lewis, and Peter Polson. 1994. The cognitive walkthrough method: A practitioner's guide. In *Usability inspection methods*. 105–140.